2,598 research outputs found

    Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests

    Full text link
    A complete discussion of tree-level flavor-changing effects in the Randall-Sundrum (RS) model with brane-localized Higgs sector and bulk gauge and matter fields is presented. The bulk equations of motion for the gauge and fermion fields, supplemented by boundary conditions taking into account the couplings to the Higgs sector, are solved exactly. For gauge fields the Kaluza-Klein (KK) decomposition is performed in a covariant R_xi gauge. For fermions the mixing between different generations is included in a completely general way. The hierarchies observed in the fermion spectrum and the quark mixing matrix are explained naturally in terms of anarchic five-dimensional Yukawa matrices and wave-function overlap integrals. Detailed studies of the flavor-changing couplings of the Higgs boson and of gauge bosons and their KK excitations are performed, including in particular the couplings of the standard W and Z bosons. A careful analysis of electroweak precision observables including the S and T parameters and the Zbb couplings shows that the simplest RS model containing only Standard Model particles and their KK excitations is consistent with all experimental bounds for a KK scale as low as a few TeV, if one allows for a heavy Higgs boson and/or for an ultra-violet cutoff below the Planck scale. The study of flavor-changing effects includes analyses of the non-unitarity of the quark mixing matrix, anomalous right-handed couplings of the W bosons, tree-level flavor-changing neutral current couplings of the Z and Higgs bosons, the rare decays t-->c(u)+Z and t-->c(u)+h, and the flavor mixing among KK fermions. The results obtained in this work form the basis for general calculations of flavor-changing processes in the RS model and its extensions.Comment: 70 pages, 12 figures. v2: Incorrect treatment of phases in zero-mode approximation corrected, and discussion of electroweak precision tests modified. v3: Additional minor modifications and typos corrected; version published in JHE

    Correlations between the interfacial chemistry and current-voltage behavior of n-GaAs/liquid junctions

    Get PDF
    Correlations between the surface chemistry of etched, (100) oriented n-GaAs electrodes and their subsequent photoelectrochemical behavior have been probed by high-resolution x-ray photoelectron spectroscopy. GaAs photoanodes were chemically treated to prepare either an oxide-free near stoichiometric surface, a surface enriched in zero-valent arsenic (As0), or a substrate-oxide terminated surface. The current-voltage (I-V) behavior of each surface type was subsequently monitored in contact with several electrolytes

    Indirect tests of the Randall-Sundrum model

    Full text link
    I present phenomenological implications of the Randall-Sundrum model for indirect searches, specifically a selection of flavor observables and Higgs-related collider searches. I review the interplay of constraints from CP violation in flavor physics, possible effects in rare decays, and model-specific protection mechanisms. Deviations in the Higgs couplings to fermions and, at one-loop, to gluons are unexpectedly strong and lead to strong modifications in Higgs searches.Comment: 8 pages, 6 figures; Talk given at Discrete '10: Symposium on Prospects in the Physics of Discrete Symmetries, Rome, Italy, 6-11 Dec 201

    'Rapid fire' spectroscopy of Kepler solar-like oscillators

    Full text link
    The NASA Kepler mission has been continuously monitoring the same field of the sky since the successful launch in March 2009, providing high-quality stellar lightcurves that are excellent data for asteroseismology, far superior to any other observations available at the present. In order to make a meaningful analysis and interpretation of the asteroseismic data, accurate fundamental parameters for the observed stars are needed. The currently available parameters are quite uncertain as illustrated by e.g. Thygesen et al. (A&A 543, A160, 2012), who found deviations as extreme as 2.0 dex in [Fe/H] and log g, compared to catalogue values. Thus, additional follow-up observations for these targets are needed in order to put firm limits on the parameter space investigated by the asteroseismic modellers. Here, we propose a metod for deriving accurate metallicities of main sequence and subgiant solar-like oscillators from medium resolution spectra with a moderate S/N. The method takes advantage of the additional constraints on the fundamental parameters, available from asteroseismology and multi-color photometry. The approach enables us to reduce the analysis overhead significantly when doing spectral synthesis, which in turn will increases the efficiency of follow-up observations.Comment: 3 pages, 2 figures. Proceedings from Asteroseismology of Stellar Populations in the Milky Way 2013 to appear in 'Astrophysics and Space Science Proceedings

    Constraints on Randall-Sundrum model from top-antitop production at the LHC

    Full text link
    We study the top pair production cross section at the LHC in the context of Randall-Sundrum model including the Kaluza-Klein (KK) excited gravitons. It is shown that the recent measurement of the cross section of this process at the LHC restricts the parameter space in Randall-Sundrum (RS) model considerably. We show that the coupling parameter (kMˉpl\frac{k}{\bar{M}_{pl}}) is excluded by this measurement from 0.03 to 0.22 depending on the mass of first KK excited graviton (m1m_1). We also study the effect of KK excitations on the spin correlation of the top pairs. It is shown that the spin asymmetry in ttˉt\bar{t} events is sensitive to the RS model parameters with a reasonable choice of model parameters.Comment: 17 pages, 6 figure

    Impacts of a flaring star-forming disc and stellar radial mixing on the vertical metallicity gradient

    Get PDF
    Using idealized N-body simulations of a Milky Way-sized disc galaxy, we qualitatively study how the metallicity distributions of the thin disc star particles are modified by the formation of the bar and spiral arm structures. The thin disc in our numerical experiments initially has a tight negative radial metallicity gradient and a constant vertical scaleheight. We show that the radial mixing of stars drives a positive vertical metallicity gradient in the thin disc. On the other hand, if the initial thin disc is flared, with vertical scaleheight increasing with galactocentric radius, the metal-poor stars, originally in the outer disc, become dominant in regions above the disc plane at every radii. This process can drive a negative vertical metallicity gradient, which is consistent with the current observed trend. This model mimics a scenario where the star-forming thin disc was flared in the outer region at earlier epochs. Our numerical experiment with an initial flared disc predicts that the negative vertical metallicity gradient of the mono-age relatively young thin disc population should be steeper in the inner disc, and the radial metallicity gradient of the mono-age population should be shallower at greater heights above the disc plane. We also predict that the metallicity distribution function of mono-age young thin disc populations above the disc plane would be more positively skewed in the inner disc compared to the outer disc

    TMCalc - A fast code to derive Teff and [Fe/H] for FGK stars

    Full text link
    We present a new direct spectroscopic calibration for a fast estimation of the stellar metallicity [Fe/H]. These calibrations were computed using a large sample of 451 solar-type stars for which we have precise spectroscopic parameters derived from high quality spectra. The new [Fe/H] calibration is based on weak Fe I lines, which are expected to be less dependent on surface gravity and microturbulence, and require only a pre-determination of the effective temperature. This temperature can be obtained using a previously presented line-ratio calibration. We also present a simple code that uses the calibrations and procedures presented in these works to obtain both the effective temperature and the [Fe/H] estimate. The code, written in C, is freely available for the community and may be used as an extension of the ARES code. We test these calibrations for 582 independent FGK stars. We show that the code can be used as a precise and fast indicator of the spectroscopic temperature and metallicity for dwarf FKG stars with effective temperatures ranging from 4500 K to 6500 K and with [Fe/H] ranging from -0.8 dex to 0.4 dex.Comment: 10 pages, 8 Figures, published in A&

    Improving the entanglement transfer from continuous variable systems to localized qubits using non Gaussian states

    Full text link
    We investigate the entanglement transfer from a bipartite continuous-variable (CV) system to a pair of localized qubits assuming that each CV mode couples to one qubit via the off-resonance Jaynes-Cummings interaction with different interaction times for the two subsystems. First, we consider the case of the CV system prepared in a Bell-like superposition and investigate the conditions for maximum entanglement transfer. Then we analyze the general case of two-mode CV states that can be represented by a Schmidt decomposition in the Fock number basis. This class includes both Gaussian and non Gaussian CV states, as for example twin-beam (TWB) and pair-coherent (TMC, also known as two-mode-coher ent) states respectively. Under resonance conditions, equal interaction times for both qubits and different initial preparations, we find that the entanglement transfer is more efficient for TMC than for TWB states. In the perspective of applications such as in cavity QED or with superconducting qubits, we analyze in details the effects of off-resonance interactions (detuning) and different interaction times for the two qubits, and discuss conditions to preserve the entanglement transfer.Comment: revised version, 11 pages, 7 figures (few of them low-res
    • …
    corecore